Information Theoretic Multi-Target Feature Selection via Output Space Quantization

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Information-theoretic algorithm for feature selection

Feature selection is used to improve efficiency of learning algorithms by finding an optimal subset of features. However, most feature selection techniques can handle only certain types of data. Additional limitations of existing methods include intensive computational requirements and inability to identify redundant variables. In this paper, we are presenting a novel, information-theoretic alg...

متن کامل

Information-theoretic feature selection for functional data classification

The classification of functional or high-dimensional data requires to select a reduced subset of features among the initial set, both to help fighting the curse of dimensionality and to help interpreting the problem and the model. The mutual information criterion may be used in that context, but it suffers from the difficulty of its estimation through a finite set of samples. Efficient estimato...

متن کامل

A New Perspective for Information Theoretic Feature Selection

Feature Filters are among the simplest and fastest approaches to feature selection. A filter defines a statistical criterion, used to rank features on how useful they are expected to be for classification. The highest ranking features are retained, and the lowest ranking can be discarded. A common approach is to use the Mutual Information between the feature and class label. This area has seen ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Entropy

سال: 2019

ISSN: 1099-4300

DOI: 10.3390/e21090855